Search results for "cosmology of theories beyond the SM"

showing 10 items of 30 documents

Searching for Earth/Solar axion halos

2020

We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyCP violationBeyond Standard Modellcsh:QC770-798CP violationHaloEarth (classical element)Astrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)Journal of High Energy Physics
researchProduct

Cuckoo's Eggs in Neutron Stars: Can LIGO Hear Chirps from the Dark Sector?

2018

We explore in detail the possibility that gravitational wave signals from binary inspirals are affected by a new force that couples only to dark matter particles. We discuss the impact of both the new force acting between the binary partners as well as radiation of the force carrier. We identify numerous constraints on any such scenario, ultimately concluding that observable effects on the dynamics of binary inspirals due to such a force are not possible if the dark matter is accrued during ordinary stellar evolution. Constraints arise from the requirement that the astronomical body be able to collect and bind at small enough radius an adequate number of dark matter particles, from the requ…

Nuclear and High Energy PhysicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectgr-qcDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsStellar evolutionmedia_commonParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsStar formationGravitational wavehep-exGeneral Relativity and CosmologyFifth forcehep-phCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyNeutron starBeyond Standard Modelastro-ph.COlcsh:QC770-798Particle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Inflation might be caused by the right

2009

15 pages, 4 figures.-- ISI article identifier: 000265600800102.-- ArXiv pre-print avaible at: http://arxiv.org/abs/0811.2998

Inflation (cosmology)PhysicsNuclear and High Energy PhysicsParticle physicsBeyond Standard ModelAstrophysics (astro-ph)FOS: Physical sciencesElementary particleFermionInflatonAstrophysicsMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Neutrino PhysicsNeutrinoScalar fieldComputer Science::DatabasesLeptonCosmology of Theories beyond the SM
researchProduct

Dark coupling

2009

30 pages, 10 figures, 3 tables.-- Pre-print archive.

AstrofísicaPhysicsCouplingCosmology and Nongalactic Astrophysics (astro-ph.CO)COSMIC cancer databasemedia_common.quotation_subjectFOS: Physical sciencesPerturbation (astronomy)Astronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCosmology of Theories beyond the SMCurvatureCMB cold spotCosmological perturbation theoryUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy theoryDark energyNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysicsmedia_commonJournal of Cosmology and Astroparticle Physics
researchProduct

Light majoron cold dark matter from topological defects and the formation of boson stars

2019

We show that for a relatively light majoron ($\ll 100 $ eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.

PhysicsmonopolesParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosdomain wallsCosmic stringsDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCosmology of Theories beyond the SMTopological defectCosmic stringStarsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryparticle physics – cosmology connectionMajoronBosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Flavour mixing transport theory and resonant leptogenesis

2021

We derive non-equilibrium quantum transport equations for flavour-mixing fermions. We develop the formalism mostly in the context of resonant leptogenesis with two mixing Majorana fermions and one lepton flavour, but our master equations are valid more generally in homogeneous and isotropic systems. We give a hierarchy of quantum kinetic equations, valid at different approximations, that can accommodate helicity and arbitrary mass differences. In the mass-degenerate limit the equations take the familiar form of density matrix equations. We also derive the semiclassical Boltzmann limit of our equations, including the CP-violating source, whose regulator corresponds to the flavour coherence d…

High Energy Physics - TheoryDensity matrixNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesSemiclassical physicsQC770-798hiukkasfysiikkakosmologia01 natural sciences114 Physical sciencesHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesMaster equationThermal Field Theory010306 general physicscosmology of theories beyond the SMMixing (physics)Mathematical physicsPhysicsThermal quantum field theory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFermionCosmology of Theories beyond the SMthermal field theory3. Good healthHigh Energy Physics - PhenomenologyMAJORANACP violationHigh Energy Physics - Theory (hep-th)LeptogenesisAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Production of dark-matter bound states in the early universe by three-body recombination

2018

The small-scale structure problems of the universe can be solved by self-interacting dark matter that becomes strongly interacting at low energy. A particularly predictive model for the self-interactions is resonant short-range interactions with an S-wave scattering length that is much larger than the range. The velocity dependence of the cross section in such a model provides an excellent fit to self-interaction cross sections inferred from dark-matter halos of galaxies and clusters of galaxies if the dark-matter mass is about 19 GeV and the scattering length is about 17 fm. Such a model makes definite predictions for the few-body physics of weakly bound clusters of the dark-matter particl…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear Theorymedia_common.quotation_subjectPhysics beyond the Standard ModelDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateEffective field theoryCluster (physics)lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear Experimentmedia_commonPhysics010308 nuclear & particles physicsScattering lengthCosmology of Theories beyond the SMUniverseGalaxyHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses

2020

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly class…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsCosmology of Theories beyond the SMGalaxyUniverseDwarf spheroidal galaxyHidden sectorHigh Energy Physics - PhenomenologyAntiprotonBeyond Standard Modellcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Tensor bounds on the hidden universe

2018

During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)ddc:500.201 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensorPlanck010306 general physicsmedia_commonPhysicsInflation (cosmology)Slow roll010308 nuclear & particles physicsScalar (physics)InflatonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Renormalization Regularization and RenormalonsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct